
Evaluation of WebRTC in the Cloud for Surgical
Simulations: A case study on Virtual Rotator Cuff

Arthroscopic Skill Trainer (ViRCAST)

William Kwabla1, Furkan Dinc1, Khalil Oumimoun1, Sinan Kockara2 [0000-0002-5881-1653],
Tansel Halic3 [0000-0002-2558-4001], Doga Demirel4,* [0000-0002-8270-1163], Sreekanth

Arikatla5, and Shahryar Ahmadi6

1University of Central Arkansas, Conway, Arkansas, USA
2Lamar University, Beaumont, Texas, USA

3Intuitive Surgical, Peachtree Corners, Georgia, USA
4Florida Polytechnic University, Lakeland Florida, USA

5Kitware Inc., Carrboro, North Carolina, USA
6Memorial Orthopaedic Surgical Group, Long Beach, California, USA

*ddemirel@floridapoly.edu

william.k.kwabla@gmail.com, furkandinc71@gmail.com,
khalil.oumimoun@gmail.com, skockara@lamar.edu,

Tansel.halic@intusurg.com, ddemirel@floridapoly.edu,
sree.arikatla@gmail.com, ahmadismd@gmail.com

Abstract. Web Real-Time Communication (WebRTC) is an open-source tech-
nology which enables remote peer-to-peer video and audio connection. It has
quickly become the new standard for real-time communications over the web and
is commonly used as a video conferencing platform. In this study, we present a
different application domain which may greatly benefit from WebRTC technol-
ogy, that is virtual reality (VR) based surgical simulations. Virtual Rotator Cuff
Arthroscopic Skill Trainer (ViRCAST) is our testing platform that we completed
preliminary feasibility studies for WebRTC. Since the elasticity of cloud compu-
ting provides the ability to meet possible future hardware/software requirements
and demand growth, ViRCAST is deployed in a cloud environment. Addition-
ally, in order to have plausible simulations and interactions, any VR-based sur-
gery simulator must have haptic feedback. Therefore, we implemented an inter-
face to WebRTC for integrating haptic devices. We tested ViRCAST on Google
cloud through haptic-integrated WebRTC at various client configurations. Our
experiments showed that WebRTC with cloud and haptic integrations is a feasi-
ble solution for VR-based surgery simulators. From our experiments, the
WebRTC integrated simulation produced an average frame rate of 33 fps, and the
hardware integration produced an average lag of 0.7 milliseconds in real-time.

Keywords: webRTC, cloud computing, surgical education, surgical simulation,
remote collaboration.

mailto:ddemirel@floridapoly.edu
mailto:william.k.kwabla@gmail.com
mailto:furkandinc71@gmail.com
mailto:skockara@lamar.edu
mailto:Tansel.halic@intusurg.com
mailto:ddemirel@floridapoly.edu
mailto:sree.arikatla@gmail.com

2

1 Introduction

Web Real-Time Communication (WebRTC) is a web-based technology which provides
audio/video calls, chats, peer-to-peer (P2P) file-sharing functionalities, and everything
in between to web and mobile applications without additional third-party plugins.
WebRTC can be used in many different domains. In this study, we investigate the usa-
bility of WebRTC on surgical simulations.

Surgery simulation is a specialty where students and professionals train and practice
modern surgical procedures. Recent developments in virtual/augmented reality
(VR/AR) introduce new possibilities and dimensions to surgery simulations. Due tof
the high fidelity, real-time, 3D animations and the ability to manipulate hardware in-
struments attached or integrated into haptic devices, surgical communities have adopted
VR/AR-based medical simulations [1]. Surgical simulations can range from simple su-
turing exercises for an individual student to advanced robotic surgery simulations for
expert surgeons. Medical simulations have been shown to reduce costs, medical errors,
and mortality rates while improving providers’ performance [2][3].

Current surgical simulations require the physical presence of an experienced surgeon
with a trainee, which can even be difficult due to the busy schedule of expert surgeons.
When the COVID-19 pandemic hit the world in 2020, it forced people to work re-
motely, including medical professionals and trainees. This shift brought many changes
to many industries across the world. Medical education was one of the most critical
fields affected by this [4][5]. The disruption has curtailed an essential part of surgical
education which is the acquisition of surgical skills through continuous practice [6][7].
With the current shift towards working and schooling from home, there is a need to
explore new ways of using surgical simulations to foster remote collaborations and
continuous practice to gain surgical skills.

Cloud computing, delivers computing services, including servers, storage, data-
bases, networking, software, analytics, and intelligence over the internet to offer faster
innovation, flexible resources, and economies of scale [8].

Recent advancements in cloud computing have the potential to open doors to exploit
different ways of carrying out surgical simulations. This shift towards cloud computing
can provide many benefits for running surgical simulations on the cloud compared to
the traditional way of running surgical simulation applications on-site on bulky and
costly equipment. This shift has several advantages, including but not limited to in-
creased collaboration, cost-saving, being independent of platform dependency issues,
and remote access [9]. One of the key components of surgical simulations is user inter-
activity and force feedback through surgical tool interactions. However, currently,
cloud computing lacks support for dedicated or attachable specialized hardware support
for haptic devices.

Therefore, this work aims to present our solutions for running surgical simulation
applications in the cloud environment with integrated haptic devices. These solutions
consist of three parts; I) integrating WebRTC [10] for surgical simulations, II) running
WebRTC-based surgery simulation on Google Cloud, and III) integrating dedicated
surgical hardware tools with haptic integration for high-fidelity interactions. All these
components are accessible through web browsers from anywhere, anytime, and with

3

any device with an internet connection. To the best of our knowledge, no prior work
runs surgical simulations remotely in the cloud with hardware integration.

Surgeons’ schedules are already busy with cases. For every fellow/resident surgeon
under training, the attending surgeon's schedule becomes even busier because the at-
tending surgeon must supervise the critical portions of the surgeries. Attending sur-
geons usually work on multiple cases in parallel and ensure no critical parts overlap.
Adding extra load on surgeons for being physically supervising a fellow/resident sur-
geon operating on a case in a VR-based surgery simulator is very challenging. This has
adversely affected the acquisition of clinical and surgical skills, which is a critical com-
ponent in training surgical residents. Current surgical simulations require a physical
presence of an expert surgeon to supervise a fellow/resident. Using current surgical
simulations is a challenge in situations like the COVID-19 pandemic, where physical
gatherings were banned.

Most surgical simulations require high-performance computers, which are costly to
run on due to the high computations and intensive realistic 3D rendering associated
with realistic simulators [8][17]. Aside from that, most surgical simulation applications
are platform-dependent. This means that they can only be executed on a specific plat-
form. Cloud computing provides high-end computers with high specifications enabling
surgical simulations to run compute-intensive realistic 3D rendering with high-fidelity
interactions [5]. Using cloud environments with WebRTC for surgical simulations first
eradicates the burden of acquiring high-end computers. Second, it helps solve platform
dependency issues associated with the execution of surgical simulations. With the
world shifting towards remote work and collaboration, cloud computing and WebRTC
provide an avenue to enable remote collaboration from anywhere in the world without
requiring the physical presence and the presence of special high-performance equip-
ment to run a simulation. This would provide medical students and surgical fellows/res-
idents an avenue to practice and gain more clinical and surgical skills remotely.

With the surgical simulation applications running on the cloud, all surgical residents
and surgeons can use surgical simulations through a low-cost computer, tablet, or
smartphone with the internet and a web browser. This is illustrated in Fig. 1 with an
arthroscopic view scene from our virtual rotator cuff arthroscopic skill trainer (ViR-
CAST) [22]. We use ViRCAST as our testbed platform to investigate possibilities of
developing surgical simulations over WebRTC and cloud technologies with haptic in-
tegration. Furthermore, these technologies may help researchers and developers of sur-
gical simulations to focus on improving the realism of surgical simulations and devel-
oping new features without any hardware and resource limitations [9].

4

Fig. 1. Depicts cloud use for a surgery simulation using different devices at geographically dif-
ferent locations. In the same scene, multiple residents can collaborate with an expert surgeon’s
guidance and supervision.

There are several arthroscopic surgery-related simulators. A tabletop arthroscopic
simulator, Sawbones "FAST" system [15], is similar to a basic arthroscopic surgery
trainer, except that FAST only focuses on arthroscopic skills. FAST has a series of
interchangeable boards to practice different scenarios such as navigating, triangulating,
and merging. It is validated with an opaque dome and can reliably distinguish between
experienced and novice surgeons [16].

One of them is the knee arthroscopy simulator developed by Tuijthof et al. [14] is
one of them. It aims to provide a complete knee arthroscopy experience. The prototype
design allows surgeons to practice meniscus examination, repair, irrigation, and limb
extension. They evaluated their simulator to validate the face and content and found it
to be an effective simulation of arthroscopic knee surgery, as well as the realism of the
arthroscopic movement and mobility.

ViRCAST is our shoulder arthroscopy simulation platform to virtually simulate ar-
throscopic rotator cuff repair surgeries. ViRCAST platform’s simulation components
are illustrated in Fig. 2.

All these works provide a method of training surgical residents on performing vari-
ous arthroscopic surgical procedures but face limitations such as remote collaboration
and continuous practice in times of global pandemic, hardware limitations, and plat-
form dependency issues when using these simulations. This study aims to investigate
the possibilities of using cloud and WebRTC with haptic integration to alleviate the
limitations associated with current surgical simulations.

5

Fig. 2. Virtual Rotator Cuff Arthroscopic Skill Trainer (ViRCAST) simulation platform.

2 Method

We implemented a cloud-based solution with WebRTC running in the cloud by inte-
grating the solution with our surgical simulation platform, ViRCAST. The architecture
overview is illustrated in Fig. 3. The solution involves integrating the surgical simula-
tion with WebRTC and deploying the WebRTC-integrated simulation on Google Cloud
with hardware support for interaction and haptic feedback. This section details the de-
sign and development methodologies utilized for our cloud-based surgical simulation
environment. Our implementation consisted of three core components: a) integration of
ViRCAST with WebRTC, b) real-time interaction with ViRCAST through specialized
hardware, and c) deploying WebRTC-integrated ViRCAST on the cloud. All these
components are architecturally illustrated in Fig. 3.

Fig. 3. Architectural overview of our implementation.

6

2.1 Integrating WebRTC With a Surgical Simulation

Our surgical simulation application was developed with the Unity Game Engine. In our
ViRCAST simulation, we added two cameras to broadcast the scenes to the browser
for multiple peers. This allowed each peer to have their own copy of the scene to inter-
act with and a rendering stream to allow the surgical simulation to communicate with
the signaling servers. With a C# render streaming script, we specified the signaling
type, signaling URL, interactive connectivity establishment (ICE) servers, and an op-
tion to use hardware encoding or the default software encoding of the browser. As part
of the simulator, we implemented a broadcast stream script in C# to stream media and
data via multiple peer connections. This broadcast stream allowed us to attach compo-
nents that needed to be streamed to multiple peers, such as audio in the browser, through
the signaling server. This is illustrated in the Unity portion of Fig. 3.

Using the User Datagram Protocol (UDP/IP), we implemented a WebSocket signal-
ing web server in Nodejs, which creates a peer-to-peer network between Unity and the
web browser, which broadcasts the surgical simulation scenes from Unity to the peers
connected by the web server through their web browsers (clients). We then imple-
mented a data channel as part of the Nodejs signaling server built on top of stream
control transmission protocol (SCTP) to transmit data between the peers and get the
data from the specialized surgical tools for interactions with the simulation This is il-
lustrated in the web server portion Fig. 3. Once we integrated WebRTC with our surgi-
cal simulation, the next step was solving the integration of the specialized surgical tools
for interaction.

2.2 Getting Data from The Specialized Hardware to The Surgical Simulation

One of the most essential parts of surgical simulations is the surgical tools used to in-
teract with the simulations, and most of these tools are specialized hardware (arthro-
scopes and other surgical instruments), as illustrated in Fig. 4. Haptic devices provide
force feedback and ways to enable real-time interactions in the simulations
[17][18][19][20]. ViRCAST connects real arthroscopic surgery instruments to haptic
devices through 3D-printed custom connectors.

Fig. 4. Specialized hardware used in surgical simulations (a) a haptics device, (b) an arthroscope,
and (c) a grasper.

7

In order to provide interactions with our surgical simulation, we had to tackle an
important question: “How do you get the data from specialized surgical tools to the
simulation in the cloud?” since cloud computing lacks support for specialized surgical
hardware tools. Most of these surgical tools are USB enabled and the web browser
cannot communicate with USB devices on computers. Due to security reasons, browser
manufacturers do not allow browsers to access USB ports and the challenge was to find
a way to enable the reading of data from surgical tools.

To solve this issue, we implemented a C++ interface as a middleware between the
hardware and the web browser, as illustrated in Fig. 5. The interface uses dynamic link
libraries to read float data from the hardware devices, converts it to bytes, and uses the
Win32 API to send the data to the serial communication port (COM). The COM port is
selected by the user at the first-time execution of the C++ application. Most of the data
from these surgical tools are floats and the COM ports do not understand float types,
so we converted the floats to bytes before being parsed by COM ports. Each set of data
was terminated with a newline character to indicate the end of each set.

Web browsers cannot access COM ports on users' computers due to security reasons.
In order to read the hardware data sent to the COM port by the C++ application, we
implemented a script using the Web Serial API, which reads the bytes of data and parses
it. In order to avoid buffer overflow in the data transfer between the C++ interface and
the web browser, both applications use the same baud rate of 115 and 200.

The C++ interface sends data to the serial port through a stream. Streams are bene-
ficial but challenging because they don’t necessarily get all of the data at once; the data
may be arbitrarily chunked up. In most cases, each character is on its own line. Ideally,
the stream should be parsed into individual lines, and each message shown as its own
line. Therefore, we implemented a transform stream, which made it possible to parse
the incoming stream of bytes and return the parsed data. A transform stream sits be-
tween the stream source (in this case, the hardware), and whatever is consuming the
stream (in this case the browser), and transforms the data read from the COM port from
bytes to strings before it's finally consumed. Similar to a vehicle assembly line meth-
odology, as a vehicle comes down the line, each step in the line modifies the vehicle,
so that by the time it gets to its final destination, it's a fully functioning vehicle. The
web serial APIreads each character on its own line, which is not very helpful because
the stream should be parsed into individual lines with each data shown as its own line.
To do that, multiple transforms can be implemented in the streams, taking a stream in
and chunk it based on a user delimiter. In our case, we implemented a Line Break
Transform which takes the stream in and chunks it based on line breaks that we inserted
in the data in the C++ interface.

Using the data channel in WebRTC, we sent the device data as a JSON file to the
surgical simulation application. In the surgical simulation application, we implemented
a C# script to read the data from the data channel and process the JSON data into floats.
The transformed data was then applied to the surgical simulation enabling real-time
interactions through the haptic device(s).

To ensure users are safe, before users can start using the simulation, the web appli-
cation allows them to pick and connect to the surgical tools to be used in the simulation.
This ensures that they give access to the hardware devices themselves instead of the

8

hardware devices automatically connecting themselves. The architectural overview is
illustrated in Fig. 5.

Fig. 5. Architectural overview for getting data from the specialized hardware to the surgical sim-
ulation.

2.3 Deploying WebRTC integrated Surgical Simulation in the Cloud

To test out our haptic integrated WebRTC-based ViRCAST simulation on the cloud,
we chose the Google Cloud Platform (GCP) as a choice of cloud platform. With the
main aim of running surgical simulations in the cloud fostering remote collaboration,
using a Session Traversal Utilities (STUN) for Network Address Translation (NAT)
server prevents some users from using the application because of the firewall issues
associated with their networks. To solve this, we deployed a COTURN (an open-source
implementation for Traversal Using Relays (TURN) around Network Address Trans-
lation (NAT) server) server on a Google Compute Engine instance. Traversal Using
Relays (TURN) servers help bypass network firewalls. The architecture is illustrated in
Figure 6.

Fig. 6. Architectural of how the TURN server allows peers to connect over the firewall

9

The GCP Compute Engine instance was located at Council Bluffs, Iowa, North
America (us-central1-f) with a machine type of e2-micro (2 vCPUs, 1 GB memory,
Shared-core VM), 10GB SSD storage and a Bandwidth of 1Gbps running Ubuntu 20.
The Unity application and the web server application communicate with the TURN
server through Interactive Connectivity Establishment (ICE), so we configured the ICE
servers of both the Unity application and web application to point to the external Inter-
net Protocol (IP) address of the COTURN server.

After setting up the COTURN server, we deploy our WebSocket web server for sig-
naling to Heroku’s (a platform as a service (PaaS) that enables developers to build, run,
and operate applications entirely in the cloud) free-tier dyno. The web server allowed
the connection between multiple peers and the surgical simulation remotely. Once the
signaling server was deployed, we updated the Unity application with the signaling
server’s URL from Heroku to enable communication between the Web server and
Unity.

The next step of the deployment process is to deploy the WebRTC-integrated ViR-
CAST. We set up an NVIDIA RTX Virtual Workstation with Windows Server 2019
on Google Cloud located at Council Bluffs, Iowa, North America (us-central1-b). The
NVIDIA Workstation Compute instance is configured with the NVIDIA Tesla T4 GPU
with 1 GPU, 24 CPUs, 156 GB of memory, 32 Gbps bandwidth, and 50 GB SSD. We
then set up firewall rules for the instance to allow Hypertext Transfer Protocol Secure
(HTTPS) connections to the instance using Google Cloud’s Virtual Private Cloud
(VPC) network configuration.

After setting up the Google Cloud Platform (GCP) computer instance, we package
the WebRTC-integrated ViRCAST in release mode as an executable and transfer it onto
the NVIDIA workstation. We finally execute the surgical simulation application on the
NVIDIA workstation running on the Google Cloud and access the surgical simulation
from the web application deployed on Heroku.

3 Experiment & Results

In this section, we evaluate the performance of WebRTC over real networks. We spe-
cifically focus on studying the performance of our ViRCAST simulation with WebRTC
and haptic integration over Google cloud instance. We consider two types of WebRTC
nodes: (I) a remote wireless node and (II) a remote wired node. The experiment setup
can be seen in Fig. 7.

Once the simulation is deployed on the cloud, the two nodes access the simulation
through their browsers, and we gather the data for each node’s framerate, packet loss,
and jitter.

10

Fig. 7. Experiment Setup

3.1 Wireless Performance

The wireless node was at a residence in Conway, Arkansas (Location 1) and Lakeland,
Florida (Location 2). The node is a Lenovo AMD Ryzen 5 laptop with 12GB RAM
running Windows 11. The simulation was accessed through both Google Chrome and
Microsoft Edge browsers.
 In Tables 1 and 2, we present the number of bitrate, packets sent during each simu-
lation for each browser, and frame rate for the wireless connections.

Table 1. Data and packets for wireless nodes gathered for running the simulation at location 1
with a Chrome and Edge browser.

 Total Average Vari-
ance

Browser Frame Rate (fps)

Data (Kbits) 533,167 1,618 0.284 Chrome 31

Packets 64,012 199 0.255 Chrome
Data (Kbits) 437,494 1,298 0.36 Edge 30
Packets 55,368 168 0.295 Edge

Table 2. Data and packets for wireless nodes gathered for running the simulation at Location 2
with a Chrome and Edge browser.

 Total Average Vari-
ance

Browser Frame Rate (fps)

Data
(Kbits)

460,076 1,250 0.395 Chrome 33

Packets 58,149 162 0.319 Chrome
Data
(Kbits)

390,916 1,075 0.654 Edge 28

Packets 49,905 140 0.575 Edge

11

For location 1 (chrome browser), there was a drop in packets at the initial start of the
simulation and at minute 5, as shown in figure 8a. This was due to the network jitter,
as depicted in Figure 8b. This produced drops in frame rates as shown in Figure 8c.
Overall, the simulation produced a steady frame rate of 31 fps, as shown in Table 1.

Fig. 8. Experimental results of (a) packets, (b) jitter, and (c) frame rate for wireless connection
at Location 1 with the Chrome browser.

For location 2 (chrome browser), there were network spikes at minute 1, minute 2,
minute 3, minute 4 and minute 5 as shown in figure 9a. This was due to the network
jitter as shown in Figure 9b. Overall, the simulation produced a steady frame rate of 33
fps as shown in Table 2 and Figure 9c.

b) a)

c)

b) a)

12

Fig. 9. Experimental results of (a) packets, (b) jitter, and (c) frame rate for wireless connection
at Location 2 with the Chrome browser.

For location 1 (edge browser), there was a drop in packets at the initial start and at
the end of the simulation from minute 4 to minute 5 as shown in figure 10a. This re-
duced the frame rates as shown in Figure 10c. This was due to the network spikes which
produced high jitter as depicted in Figure 10b. Overall, the simulation produced a
steady frame rate of 30 fps as depicted in Table 1.

Fig. 10. Experimental results of (a) packets, (b) jitter, and (c) frame rate for wireless connection
at Location 1 with the Edge browser

For location 2 (edge browser), there was a drop in packets at the initial start and at
the end of the simulation from minute 4 to minute 4.60 as shown in figure 11a. This
reduced the frame rates as shown in Figure 11c. This was due to the network spikes and
traffic which produced high jitter as depicted in Figure 11b. Overall, the simulation
produced a steady frame rate of 28 fps as depicted in Table 2. The network jitter at the
end of simulation affected the framerate.

We realized the packet losses and jitter at the start of the simulations for all locations
which led to drop-in frame rate at the start of the simulations as shown in Figures 8 to

b) a)

c)

c)

13

11. We attribute this to the network bursts, and retransmission losses, and the long
Round-Trip Time (RTT) for the wireless node.

Fig. 11. Experimental results of (a) packets, (b) jitter, and (c) frame rate for wireless connection
at Location 2 with the Edge browser.

We realized the packet losses and jitter at the start of the simulations for all locations
which led to drop-in frame rate at the start of the simulations as shown in Figures 8 to
11. We attribute this to the network bursts, and retransmission losses, and the long
Round-Trip Time (RTT) for the wireless node.

3.2 Wired Performance

The wired node was set up in our lab in Conway, Arkansas (Location 3). The node is a
Supermicro desktop with 65GB RAM running Windows 10. The simulation was ac-
cessed through both Google Chrome and Microsoft Edge browsers.

In Table 3, we present the number of bitrate, packets sent, and frame rate recorded
during each simulation for each browser for the wired connections.

b) a)

c)

14

Table 3. Data and packets for wired nodes gathered for running the simulation at location 3 with
a Chrome and Edge browser.

 Total Average Vari-
ance

Browser Frame Rate (fps)

Data
(Kbits)

564,140 1,592 0.313 Chrome 33

Packets 67,621 195 0.271 Chrome
Data
(Kbits)

612,315 2,007 0.186 Edge 33

Packets 70,766 237 0.175 Edge

For location 3 (chrome browser), there was a drop in packets at the initial start and
end of the simulation, as shown in figure 12a. This was due to the network jitter, as
depicted in Figure 12b. Frame rates dropped due to the network jitter and drop in pack-
ets, as shown in Figure 12c at minute 00:00 and minute 5:30. Overall, the simulation
produced a steady frame rate of 33 fps as depicted in Table 3.

Fig. 12. Experimental results of (a) packets, (b) jitter, and (c) frame rate for wireless connection
at Location 3 with the Chrome browser.

For location 3 (edge browser), there was a drop in packets at the initial start of the
simulation and minute 2:40 as shown in figure 13a. This was due to the network high
jitter as depicted in Figure 13b. Frame rates dropped due to the network jitter and drop
in packets as shown in Figure 13c. Overall, the simulation produced a steady frame rate
of 33 fps as depicted in Table 3.

b) a)

c)

15

The small packet loss and jitter led to a steady frame rate of 33 fps during the simu-
lation as shown in Figure 13. We attribute the steady frame rate of 33 fps to the short
Round-Trip Time (RTT) for the wired node.

Fig. 13. Experimental results of (a) packets, (b) jitter, and (c) frame rate for wireless connection
at Location 3 with the Edge browser.

3.3 Hardware Lag Measurement

One key component of the research is how the specialized hardware interacts with the
surgical simulation in real-time efficiently with minimal lag. A situation where a user
interacts with the hardware but response is noticeably delayed in visual feedback is
detrimental to any real-time simulation. Therefore, lag has to be tracked and measured.
In order to track the lag measurement, we added a timestamp for when the data is sent
from the client to the server and timestamp to the server for when it receives the data
from the client. During our testing, the lag was unnoticeably small from the beginning
to the end of the simulation.

b) a)

c)

16

Table 4. Sample hardware lag measurement data. We tagged each data with a timestamp from
the time the client sent it to when the server received it and applied it to the scene.

Time Sent (Client)

yyyy-mm-dd#hh:mm:ss.SSS

Time Received (Server)

yyyy-mm-dd#hh:mm:ss.SSS

Lag

(ms)

2022-02-28#16:02:03.7 2022-02-28#16:02:03.003 0.7

2022-02-28#16:02:03.7 2022-02-28#16:02:03.033 0.7

2022-02-28#16:02:03.7 2022-02-28#16:02:03.068 0.6

2022-02-28#16:02:03.7 2022-02-28#16:02:03.098 0.6

2022-02-28T16:02:03.7 2022-02-28T16:02:03.126 0.6

4 Discussion

One key component expected from simulations is the framerate. From our testing and
data collection after running the simulation two times at each location for each browser,
the wired node streamed at a steady framerate of 33 fps while the wireless connection
gave a framerate of 30 fps.

We observed the drop in framerate for the wireless connection. It was due to the long
Round Trip Time (RTT), which led to a loss of packets which increased the jitter in the
streaming of the simulation. This led to poor video quality for the wireless node at some
points. The wired node provided a steady frame rate of 33 fps producing a high video
quality due to few packet losses producing less jitter.

In summary, our experiments produce results which proves that using WebRTC in
the Cloud is feasible, fosters remote collaboration, and removes hardware limitations.
From the research, we realized that the simulation on wired connection produced better
video quality, high frame rate with few packet losses and less jitter as compared to the
wireless connection. We observed the broadcast of a relatively high-bandwidth trans-
mission over a short period and retransmission losses can degrade the frame rate of
wireless networks, especially when the end-to-end RTT (Round-Trip Time) is long.

Moreover, one important aspect of the research was the specialized hardware inte-
gration. From our test, the hardware integration for the simulation produced an average
initial lag of 0.7 milliseconds, that is the average time data moves from the hardware
and interacts with objects in the simulation. This enabled interactions with simulation
to be in synchronization with the hardware.

5 Conclusion

In this work, we presented a method of developing surgical simulations over WebRTC
and cloud technologies with haptic integration. Our subject study was carried out with
ViRCAST. Based on the data presented in the study, we determined that our proposed

17

method was found to be found effective for running surgical simulations. Our experi-
ments revealed that the WebRTC-based simulation had an average frame rate of 33 fps,
and the hardware integration resulted in a 0.7 millisecond real-time lag.

For future work, we plan to add live chat for messaging between participants, a re-
cording feature for recording of sessions for later watch, polls for moderators to create
polls for participants to vote on during sessions, and a Whiteboard for illustrations and
discussions.

Acknowledgement. This project was made possible by NIH/NIAMS 5R44AR075481-
03 and the Arkansas INBRE program, supported by the National Institute of General
Medical Sciences (NIGMS), P20 GM103429 from the National Institutes of Health
(NIH), and partially supported by NIH/NIBIB 1R01EB033674-01A1, 5R01EB025241-
04, 3R01EB005807-09A1S1, and 5R01EB005807-10.

References

1. Stone, Robert J. “The (human) science of medical virtual learning environments.” Philo-
sophical transactions of the Royal Society of London. Series B, Biological sciences vol.
366,1562 (2011): 276-85. doi:10.1098/rstb.2010.0209

2. C. D. Combs, "Medical Simulators: Current Status and Future Needs," 2010 19th IEEE In-
ternational Workshops on Enabling Technologies: Infrastructures for Collaborative Enter-
prises, 2010, pp. 124-129, doi: 10.1109/WETICE.2010.26.

3. D. Morris, C. Sewell, F. Barbagli, K. Salisbury, N. H. Blevins and S. Girod, "Visuohaptic
simulation of bone surgery for training and evaluation," in IEEE Computer Graphics and
Applications, vol. 26, no. 6, pp. 48-57, Nov.-Dec. 2006, doi: 10.1109/MCG.2006.140.

4. Aikaterini Dedeilia, Marinos G. Sotiropoulos, John Gerrard Hanrahan, Deepa Janga, Panag-
iotis Dedeilias, Michail Sideris, Medical and Surgical Education Challenges and Innovations
in the Covid-19 Era: a Systematic Review, in Vivo Jun 2020, 34 (3 Suppl) 1603-1611; Doi:
10.21873/invivo.11950

5. Chen, SY., Lo, HY. & Hung, SK. What is the impact of the COVID-19 pandemic on resi-
dency training: a systematic review and analysis. BMC Med Educ 21, 618 (2021).
https://doi.org/10.1186/s12909-021-03041-8

6. Adesunkanmi, A.O., Ubom, A.E., Olasehinde, O. et al. Impact of the COVID-19 Pandemic
on Surgical Residency Training: Perspective from a Low-Middle Income Country. World J
Surg 45, 10–17 (2021). https://doi.org/10.1007/s00268-020-05826-2

7. Muhammad Osama, Farhan Zaheer, Hasham Saeed, Khadija Anees, Qirat Jawed, Sohaib
Hasan Syed, Bashir A. Sheikh, Impact of COVID-19 on surgical residency programs in Pa-
kistan; A residents' perspective. Do programs need formal restructuring to adjust with the
“new normal”? A cross-sectional survey study, International Journal of Surgery, Volume
79, 2020, Pages 252-256, ISSN 1743-9191, https://doi.org/10.1016/j.ijsu.2020.06.004.

8. M. N. O. Sadiku, S. M. Musa and O. D. Momoh, "Cloud Computing: Opportunities and
Challenges," in IEEE Potentials, vol. 33, no. 1, pp. 34-36, Jan.-Feb. 2014, doi:
10.1109/MPOT.2013.2279684.

18

9. José A. González-Martínez, Miguel L. Bote-Lorenzo, Eduardo Gómez-Sánchez, Rafael
Cano-Parra, Cloud computing and education: A state-of-the-art survey, Computers & Edu-
cation, Volume 80, 2015, Pages 132-151, ISSN 0360-1315,
https://doi.org/10.1016/j.compedu.2014.08.017.

10. B. Sredojev, D. Samardzija and D. Posarac, "WebRTC technology overview and signaling
solution design and implementation," 2015 38th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), 2015, pp.
1006-1009, doi: 10.1109/MIPRO.2015.7160422.

11. Andreatta, P. B., Woodrum, D. T., Birkmeyer, J. D., Yellamanchilli, R. K., Doherty, G. M.,
Gauger, P. G., & Minter, R. M. (2006). Laparoscopic Skills Are Improved With Lap-
MentorTM Training: Results of a Randomized, Double-Blinded Study. Annals of Surgery,
243(6), 854–863. http://doi.org/10.1097/01.sla.0000219641.79092.e5

12. Laparoscopic warm-up exercises improve performance of senior-level trainees during lapa-
roscopic renal surgery. Lee JY et al , J Endourol. 2012 May;26(5):545-50

13. Laparoscopic basic skills and cholecystectomy VR training curriculum was defined and val-
idated using structured scientific methodology. Aggarwal et al, British Journal of Surgery
2009; 96: 1086–1093

14. Tuijthof, G.J.M., van Sterkenburg, M.N., Sierevelt, I.N. et al. Knee Surg Sports Traumatol
Arthrosc (2010) 18: 218. https://doi.org/10.1007/s00167-009-0872-3

15. Goyal, S., Radi, M. A., Ramadan, I. K., & Said, H. G. (2016). Arthroscopic skills assessment
and use of box model for training in arthroscopic surgery using Sawbones – “FAST” work-
station. SICOT-J, 2, 37. http://doi.org/10.1051/sicotj/2016024

16. Sawbones. (2018). Sawbones FAST Arthroscopy Training System. From https://www.saw-
bones.com/sawbones-fast-arthroscopy-training-system

17. Z. A. Khan, S. B. Mansoor, M. A. Ahmad and M. M. Malik, "Input devices for virtual sur-
gical simulations: A comparative study," INMIC, 2013, pp. 189-194, doi:
10.1109/INMIC.2013.6731348.

18. Sonny Chan, MS, François Conti, PhD, Kenneth Salisbury, PhD, Nikolas H. Blevins, MD,
Virtual Reality Simulation in Neurosurgery: Technologies and Evolution, Neurosurgery,
Volume 72, Issue suppl_1, January 2013, Pages A154–A164,
https://doi.org/10.1227/NEU.0b013e3182750d26

19. E. Chen and B. Marcus, "Force feedback for surgical simulation," in Proceedings of the
IEEE, vol. 86, no. 3, pp. 524-530, March 1998, doi: 10.1109/5.662877.

20. C. Basdogan, S. De, J. Kim, Manivannan Muniyandi, H. Kim and M. A. Srinivasan, "Haptics
in minimally invasive surgical simulation and training," in IEEE Computer Graphics and
Applications, vol. 24, no. 2, pp. 56-64, March-April 2004, doi:
10.1109/MCG.2004.1274062.

21. Web Serial API - Web APIs | MDN (mozilla.org)
22. Farmer, Jake & Tunc, Mustafa & Ahmadi, Daniel & Demirel, Doga & Halic, Tansel & Ari-

katla, Sreekanth & Kockara, Sinan & Ahmadi, Shahryar. (2020). Virtual Rotator Cuff Ar-
throscopic Skill Trainer: Results and Analysis of a Preliminary Subject Study. 139-143.
10.1145/3404663.3404673.

